If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=784
We move all terms to the left:
b^2-(784)=0
a = 1; b = 0; c = -784;
Δ = b2-4ac
Δ = 02-4·1·(-784)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*1}=\frac{-56}{2} =-28 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*1}=\frac{56}{2} =28 $
| 143x=109 | | b^2=3969 | | b^2=1296 | | 4(y−8)= | | 4(y−8)= | | 5(3m+4)=3(4m+17) | | b^2=164 | | 7-d12=41 | | -2x+(-9x+45)1=-10 | | ⎼7n+5=⎼16 | | (45-9x)1/2=x-5 | | x+0.5=7/4 | | 7x+21=11x+55 | | 7x+3=11x-55 | | b^2=5,184 | | 3a-3=2(a+1)+8a+4 | | 5=-4x+1=x=1 | | b^2=2304 | | 360=((5x+3)+(127)+(88)+(10x+7) | | p^2+2=11 | | b^2=1,225 | | X²-4x+16=0 | | f/3+7=6 | | 0.5q+1.4=2.2 | | 12x+4=68 | | √10-3x=x+6 | | |3x-7|=17 | | 2x^2+x+10=5 | | 2 | | 2 | | ⎼5(3x⎼8)=⎼45 | | 3(1/3x-5=9-2x) |